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Executive summary and key messages

• The current global food production system is at risk of shocks 
from extreme weather.

• Food production for four major crops (maize, soybean, wheat and 
rice) is located in a small number of major producing countries, 
with a large amount of overlap across the crops. This means 
that the exposure of a large proportion of global production of 
the major crops is concentrated in particular parts of the globe, 
and so extreme weather events in these regions have the largest 
impact on global food production. 

• The US, China and India emerge as major breadbasket 
producers. There is a risk of simultaneous multiple breadbasket 
failures. This risk has not yet been quantified. There is an 
urgent need to understand driving dynamics of meteorological 
teleconnections in order to quantify the likelihoods of coincident 
production shocks in major food-producing regions. 

• By examining production shocks in the recent past, we see that 
weather events, particularly drought, are a major driver of these 
shocks.

• Using the example of past events we generated a set of scenarios 
of weather-driven production shocks, for each of the four crops, 
that are plausible in the present or near future climate.

• These scenarios include production shocks of the order of a 10% 
decrease in global production for each of the four major crops.

• Climate science research offers the opportunity to explore what 
climate change may mean for the future risks of food production 
system shocks from extreme weather, primarily through the use 
of climate models and crop models.

• What we would call a rare extreme food production shock in the 
late 20th century is likely to become more common in the future. 
We present evidence from a recent international study using crop 
models suggesting that a 1-in-100-year production loss from the 
20th century may be as frequent as 1-in-30 in just a few decades. 

• It is difficult to evaluate the likelihood of rare, extreme events, 
without having access to large amounts data. There is therefore 
a need for long runs of high resolution global climate model data 
simulating the current and future climate, to estimate the risks 
posed by extreme events. 

• Crop model research is needed to improve representation of 
physiological mechanisms, genetic variation and improvement in 
response to extreme growing conditions. 

• Understanding the interactions between average production 
increases, variability, and resilience to extreme events is crucial to 
future food security. 

• Also required, is further investigation into the meteorological 
teleconnections between major food production regions, and the 
probability of coincident shocks in multiple breadbaskets, both 
now and in the future
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Introduction

1.1 Increases in temperature of over two degrees Celsius are 
expected to have a negative impact on global yields of major 
crops (IPCC 2014). Projected impacts are spread unevenly 
over the globe with crop production in low latitudes expected 
to experience negative effects whereas in northern latitudes 
impacts may vary. The areas where climate change is expected 
to most threaten crop productivity (Wheeler & von Braun, 2013) 
include countries in Africa and South Asia that are home to many 
of the world’s 805 million undernourished people (FAO, 2014).

1.2 Reduction in yield and increased variability from extreme weather 
events is likely to increase the long-term mean and volatility of 
staple food prices (Tadesse et al 2014). It is therefore vital to 
further understand the impacts of climate change on future 
crop yields, both in terms of long-term means and variability. 
The Foresight report suggests that food production must be 
increased by 70% by the year 2050 and that failure to achieve 
this could contribute to deterioration in peace and security (UK 
Government, 2011).

1.3 The focus of this study was on high impact weather events in 
the largest producing areas for each of the four major global 
crops (maize, soybean, wheat and rice). Extreme events in large 
producing areas will have big impacts on the global market, 
however extremes in small production areas could still have 
significant impacts on local food security. The aim of the study 
was to generate a set of scenarios of weather-driven global food 
production shocks that are plausible in the present day or near-
future climate. These scenarios form the basis of additional work 
looking at the impacts of these production shocks on food prices 
and food security.

1.4 The study looked at both observational evidence of past 
production shocks and their relationship to weather, as well as 
using crop models to simulate the impact of weather on past 
production. This approach was taken in order to ground the study 
in the reality of the experience of the impact of weather events 
on the global production system as a whole, to ensure that the 
resultant scenarios were both plausible and salient.

1.5 In addition the use of climate model and crop model data is 
discussed as a means to explore future change in risk of weather-
driven production shocks. Some initial results from this discussion 
are presented.

Frank H
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Methods

2.1 The use of both historical events (data) and projections (models) 
is particularly important when assessing the likelihood and 
impact of extreme events. Historical events include all real-world 
yield-impacting phenomenon that models either leave out or 
represent poorly, such as flood, pests, disease, and conflict (just 
to name a few). Historical events also have the benefit of being 
demonstrably plausible and of the fact that historical responses 
and consequences can, in principle, be known. While historical 
extreme events thus provide useful analogues for present-day 
and near-future events (see e.g. Battisti &  Naylor, 2009), they 
pose some significant challenges for constructing useful and 
plausible extreme scenarios. First, they do not explicitly take into 
account future climate conditions which may significantly impact 
the size, scale, and frequency of extreme events in the near 
future. Additionally, because of rapidly changing technology, 
patterns of agricultural land-use and land-cover, and even 
political climates and wars, it is often difficult to compare an 
event separated in time by one or more decades. Finally, the 
relatively small sample-size available makes it impossible to 
resolve the tails of the anomaly distribution (i.e. identify the likely 
scale of a rare event with return times of 100 years or more). 

2.2 Evaluating extreme events with crop-climate models provides a 
complementary perspective. Crop-climate models are the only 

Table 1: Top producing regions based on FAOSTAT 2001-2010 average production values (FAOSTAT, 2015). Brackets indicate percentage of global production.

* The work utilises the 5-year rolling mean method for detrending the yield/production/area anomalies. 

way of generating data on extreme events that explicitly takes 
into account future conditions. Additionally, crop-climate models, 
driven by ensembles of simulated climate conditions, allow us to 
generate the large samples that are required to robustly evaluate 
the statistics of extreme events in the far tails of the distribution. 
Finally, crop-climate models also help us to understand the drivers 
of historical extreme events and identify the extent to which 
the yield or production anomaly in a given year was caused 
by climatological factors. Even so, the accuracy of models is 
limited by any number of uncertainties and, though important 
international projects are ongoing, the global community has yet 
to develop the full range of multi-model ensemble data products 
and intercomparisons required to address this question in a 
satisfactory way. 

2.3 In this project, we have employed both of these methods to 
develop plausible future crop-climate extreme event scenarios 
for each of the four biggest global crops (maize, soybean, wheat, 
and rice) and for global calorie production as a whole. In each 
case we have used a combination of historical data and crop-
climate models to select significant negative events from the last 
50 years and use the relative country-level yield and production 
anomaly from these years as a template for generating a 
plausible present-day or near-future extreme event.* 

Geography of crop production

3.1 Each crop has a different geographic distribution, which affects 
its exposure to weather and climate events. Table 1 shows the 
top 10 producing countries of the four main crops, and the 
percentage of global production for each country. Among the 
major crops, wheat is relatively widely distributed, while maize 
and soybean are especially concentrated in a small number 
of countries. Almost two thirds of the soybeans produced 
globally come from either the US or Brazil (and including nearby 
Argentina the production fraction is more than 80%). 

3.2 Similarly, almost 60% of maize production comes from the US or 
China, however the other 40% is more distributed. About half of 
the world’s rice production comes from China or India and nearly 
another third is produced in Southeast Asia. This high level of 
concentration, which has generally increased over the last several 
decades, makes the global food supply even more sensitive to 
large-scale climate extremes.

Maize Soybean Wheat Rice

1 US (39.17) US (38.07) China (16.41) China (28.83)

2 China (19.62) Brazil (24.89) India (11.81) India (21.24)

3 Brazil (6.33) Argentina (17.8) US (9.17) Indonesia (8.86)

4 Mexico (2.93) China (7.26) Russia (7.82) Bangladesh (6.54)

5 Argentina (2.39) India (4.03) France (5.81) Vietnam (5.69)

6 India (2.2) Paraguay (2.16) Canada (3.77) Thailand (4.77)

7 France (2.01) Canada (1.4) Germany (3.71) Myanmar (4.39)

8 Indonesia (1.79) Bolivia (0.72) Pakistan (3.38) Philippines (2.34)

9 South Africa (1.38) Indonesia (0.36) Australia (3.17) Brazil (1.82)

10 Canada (1.34) Russia (0.32) Turkey (3.14) Japan (1.7)

Total 79.2% 97% 68.2% 86.2%
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Evaluating past events from observational data

4.1 We identified extreme negative anomalies for production, yield, 
and area within the approximately 50 year period of the country-
level FAO dataset. Each was evaluated to choose good candidate 
years to use as agro-climatological ‘templates’ for plausible 
present-day and near-future extreme event scenarios. This 
methodology is described here in detail, along with the resulting 
scenario, for maize; template years and plausible extreme event 
scenarios for other crops are selected in a similar manner (see 
Appendix A).  

The geography of maize production
4.2 The two largest maize producing countries are the US and China, 

which between them produce almost 60% of the total maize 
grown in the world. The next largest producer, Brazil accounts 
for just over 6% of production, and the next seven largest have 
1-3% of the total each. This means that total global maize 
availability is disproportionately affected by production and trade 
activity in just two countries, although production in Brazil has 
the potential to have some impact too. Figure 1 shows a map 
of the world with the major maize producing countries shaded 
in green. The relatively high importance of production in the US 
and China, in global terms, means that studies of the impacts of 
climate change on maize and food security can concentrate on 
these two major producing regions. Climate events that impact 
production in either country will have global consequences, 
and the relationship between weather events in each (i.e. the 
coincidence of high impact weather in the two locations), is of 
critical importance. This suggests that for maize in particular, 
there should be a focus on the relationship between weather and 
production in the US and China, in order to understand global 
food security impacts.

Selecting a template year from historical production shock 
case studies 

4.3 Like all of the four main crops included in this study, maize has 
seen a large increase in production over time (Figure 2). The total 

production has increased approximately five fold from 1960 to 
2012, from 200 million tonnes per year, to 1 billion tonnes per 
year. This is a result of a both a steady increase in yield over that 
time, and an increasingly rapid expansion of harvest area.

4.4 At the global scale, large maize production anomalies occurred 
during 1983, 1988 and 2006. Yield and area harvested 
anomalies drove the negative production in 1983, whilst 
yield and area harvested anomalies independently drove the 
production anomalies in 1988 and 2006 respectively. There are 
two clear significant negative yield anomalies for maize, occurring 
in 1983 and 1988. A corresponding production decrease 
occurred in both years; however for 1983 this was also driven by 
a large decrease in the area harvested. Spatially, the global yield 
anomalies in both 1983 and 1988 were driven by large yield 
decreases in the US, the top maize producer. 

4.5 In 1983 (Figure 3, top panel) the US accounted for the majority 
of the reduction in production with other large losses in Brazil, 
Argentina and South Africa. Some of the production loss was 
however balanced by increases in other top producers, driven 
by positive anomalies in yield (India), area harvested (China), 
or both (Indonesia). In 1988 (Figure 3, bottom panel) the yield 
decrease in the US was almost twice as large as that seen for any 
of the top 10 maize producers. Yield and area harvested increases 
in France and Argentina provided a maize production increase 
however this was approximately two orders of magnitude smaller 
than the loss experienced in the US. Normalised to the year 2002 
values, the 1988 US damages are estimated to be approximately 
$61 billion to agriculture and related industries (Lott and Ross, 
2006).  

4.6 Recent literature indicates a strong relationship between 
droughts and maize production in the US; particularly soil 
moisture, rainfall and maximum temperatures during June and 
July, when the majority of maize is grown (Chung et al., 2014; 
Lobell et al., 2013; Westcott and Jewison, 2013; Handler, 1990). 

4.7 In June 1988 the average temperature across the US Corn Belt 
was approximately 2°C above the long term average, whilst 
rainfall was below average by over 60mm (~60%) (NOAA, 2015). 
Furthermore, July 1988 experienced slightly above average 
temperatures and a negative rainfall anomaly of almost 20mm 
(~-15%). Across the entire growing period (May-October) 1988 
ranks as the driest Palmer Drought Severity Index (PDSI) – a 
measure of soil moisture conditions – and lowest rainfall total in 
the period 1980-2014 (Figure 4). 

4.8 The US growing period PDSI and precipitation totals (Figure 4) 
however do not highlight 1983 as an anomalous year; for much 
of the growing period conditions were approximately average 
across the Corn Belt. Instead it appears to be above average 
temperatures and below average rainfall in July, and particularly 
for August, which impacted maize production. There is little 
information on the synoptic scale drivers of these conditions, 
however, it is noted that a strong El Niño event from 1982/1983 
decreased in strength and became La Niña during 1983. This 
could be important as ENSO events are associated with rainfall 

Figure 1: Proportion of total global maize production grown by country (2001-
2010 average). Source FAOSTAT (2015)
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Figure 2: Global production, yield and harvested area data for maize from 
1960 to 2012. Source: FAOSTAT (2015)

Figure 3: Detrended FAOSTAT country level maize yield anomalies (tonnes per 
hectare) for 1983 (top) and 1988 (bottom). Source FAOSTAT (2015)

Figure 4: US Corn Belt May-October PDSI (left) and precipitation (right). Source: National Centres for Environmental Information (NOAA) (2015).

and temperature anomalies across the continental US (Peterson 
et al., 2013). 

4.9 During 1983, negative yield anomalies were also experienced 
over South America and South Africa. As with the US, both 

regions experienced low rainfall and drought conditions which 
may have been linked to the 1982/1983 El Niño event (Rouault 
and Richard, 2003, Sun et al., 2007).



6   |  

Understanding the probability of extreme climate events

5.1 Looking at past events from FAO observational data of global 
crop production and investigating the driving meteorology, is a 
useful way to understand more about the relationship between 
climate extremes and global food production. However, there 
are limitations to this approach. The three main limitations are 
as follows: Firstly, that we only have data on events that actually 
occurred, and then over a relatively short period of time. This 
means it is difficult to evaluate the probability of an event, given 
such a small sample data set. Secondly, agricultural systems 
have developed substantially over time, making it difficult to 
compare production shocks separated by many years. The 
area under cultivation has increased hugely for all four crops, 
and technology, the use of fertilizers and pesticides, as well as 
farming methods have all resulted in large increases in yield. 
The result is that examples of production shocks in the past 
may not be particularly representative of the risks associated 
with shocks in the present or near future. Finally, the production 
shocks themselves could be driven by a wide range of events, not 
necessarily meteorological, also making it difficult to evaluate the 
risks associated with climate events alone.

5.2 Despite these limitations, the observational events are a 
useful means of creating complex, realistic and plausible 
representations of production shocks, and so form the basis of 
the scenarios developed in this study. In order to address some 

of the limitations, we combine this historical approach with 
model-based assessments driven by historical data and climate 
model output. This allows us to separate climate-driven events in 
the historical record from non-climate events and greatly extend 
the size of the considered sample so that we can begin to assign 
probabilities and return times to individual events. 

5.3 Figure 5 shows an example for global maize productivity, 
comparing detrended global FAO anomalies with the results 
from a single global crop model (the pDSSAT model (Elliott et 
al 2014a) driven by climate forcing data from the Princeton 
Global Forcing Dataset (Sheffield et al 2006)) from the Global 
Gridded Crop Model intercomparison (GGCMI) project (Elliott 
et al 2015). Here the model and FAO data agree quite well over 
the overlapping period and both convincingly find 1988 to 
be the most severe recent year. Assuming the historical yields 
are distributed normally around the mean, 1988 is estimated 
to be 2.5 to 3 standard deviations from the mean. However, 
given the asymmetry (negatively skewed) of the yield anomaly 
distribution, this event is likely to occur much more often than 
this suggests. Either way, we can be confident that 1988 was the 
most severe event in the last 6 decades and was largely driven 
by climatological factors, making it a good template year for 
constructing a plausible extreme production shock event. 

Figure 5: Comparison showing FAO data and model output for global maize productivity, using only a single processing methodology in both cases.
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Developing a global production shock scenario

6.1 From the data available on the geography of global maize 
production, the examples investigated from the case study year 
events, and the model-based analysis of historical extremes, 
the following scenario for maize was developed (Table 2). This 
outlines representative changes in production levels, based on 
the actual events of 1988. Similar scenarios are developed for 
the other major crops (see Appendix A). Table 3 summarizes 
the template years chosen for each of the four crops, and gives 
the global production loss estimated from the historical and 
simulated anomalies.

Country Harvest %  Absolute  Driving 
 period production production meteorology
  decrease* loss (tonnes) 

US Sept-Nov 31% 56,432,003 Drought

China July-Oct 4% 3,281,670 

Canada Sept-Nov 16% 1,017,300 Drought

Mexico Apr-July 11% 1,347,155 

Global  12% 55,867,720 Driven by US

* % of national total

Table 2: Scenario figures for a maize production shock (based on 1988 case 
study)

Country Case  %  Absolute  Modelled  
 study Production production yield loss
 year decrease loss from GGCMI  
   (million tonne) (%)

Maize 1988 12% 55.9 13.5-16.4

Soybean 1988/89 8.5% 8.9 6.0-6.3

Wheat 2003 6% 36.6 6.4-9.5

Rice 2002/03 4% 21.7 1.9-3.5

Table 3: Global scenario figures for production shocks.

State of climate science

7.1 The scenarios developed in this study are the result of an 
assessment of recent past weather-driven global production 
shock events. However, the climate is changing, and in order to 
understand what this means for the risks associated with future 
production shocks, climate scientists rely on a combination of 
an understanding of the physical, dynamical processes that 
drive the Earth’s system, and climate models to simulate that 
system. Whilst no model is perfect, climate models have proven 
remarkably accurate in forecasting the climate change we’ve 
experienced to date. In a few cases, model projections have 
been overly conservative, for example, in projecting how quickly 
Arctic sea ice would decline. It has in fact declined more rapidly 
than the models forecast. Today’s climate models encapsulate 
the great expanse of current understanding of the physical 
processes involved in the climate system, their interactions, 
and the performance of the climate system as a whole. They 
are extensively tested relative to observations and are able to 
reproduce the key features found in the climate of the past 
century.

7.2 Because models differ in their representation of certain 
processes, we make use of these differences by examining suites 
of models in climate assessments. However, they all give the 
same basic story. Also, despite the tremendous improvements 
in the climate modelling capabilities over the last 45 years since 
the first model was developed, the basic response of a significant 

effect on the climate system from human activities continues 
to be about the same as the models were finding then. These 
models are the only crystal balls we have – and although not 
perfect, they are very useful tools.

7.3 The computational power required by climate models can be 
thought of as falling into three categories. First, the model must 
solve physical equations, which become more computationally 
expensive the more complex – and therefore realistic – the model 
becomes. Second, since the equations are solved on a grid that 
covers the globe, high resolution is needed in order to capture 
weather systems and other processes adequately. High resolution 
is particularly important when projecting extreme events. Third, 
since climate prediction is inherently uncertain, multiple model 
runs, often involving a range of models, need to be run. These 
model ensembles aim to capture the range of possible futures 
and provide an indication of the likelihood of the outcomes 
within that range. They also allow for better understanding of the 
role of natural variability in future climate changes. In general, 
the greater the size of the ensemble, the greater the confidence 
in the spread obtained. In projecting extreme events multiple 
simulations, and/or simulation of very long periods of time, 
becomes particularly important. By their nature extreme events 
are rare, so that many years of simulations are needed in order to 
capture information regarding their frequency. 
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7.4 Although the overall change in average climate itself is certainly 
important, much more important to society and to agriculture are 
the changes occurring in severe weather. There is strong evidence 
of an increasing trend over recent decades in some types of 
extreme weather events, including their frequency, intensity, 
and duration (Min et al., 2011; IPCC, 2012, 2013; Trenberth & 
Fasullo, 2012; Zwiers et al., 2013; Wuebbles et al., 2014; Janssen 
et al., 2014). Analyses by NOAA in the U.S. and by Munich Re 
and other organizations (Rauch, 2011; Meyer et al., 2013) show 
that there is an increasing cost on our society from an increasing 
trend in severe events. Observations show increasing trends 
worldwide in the number of extremely hot days, fewer extreme 
cold days, more precipitation events coming as unusually large 
precipitation, and more floods in some regions and more drought 
in others (IPCC, 2012, 2013). High impact, large-scale extreme 
events are complex phenomena involving various factors that 
come together to create a “perfect storm.” Such extreme weather 
obviously does occur naturally. However, the influence of human 
activities on global climate is altering the frequency and/or 
severity of many of these events (IPCC, 2012, 2013). Observed 
trends in extreme weather events, such as more hot days, fewer 
cold days, and more precipitation coming as extreme events, are 
expected to continue and to intensify over this century (IPCC, 
2012, 2013). Figure 6 shows the increasing trend in the Extreme 
Precipitation Index based on observations over the continental 
United States. Similarly findings are found throughout most 
of the world.  Recent studies (e.g., Cook et al., 2015) are also 
suggesting that megadroughts over many areas of the world 
may become highly likely by the end of the century. Other studies 
(IPCC, 2013; Seely & Romps, 2015; Reed et al., 2015) suggest 
that severe storm events are likely to become more intense.

7.5 Alongside the development of climate models, impact models 
that simulate agricultural systems have also been developed. 
These are usually ‘driven’ by climate models, in that they take 
their meteorological conditions from the climate models, but 
then go on to simulate the complex plant responses associated 
with the climate conditions, the interaction of this climate with 
soil conditions, water availability, etc., as well as changes in 
atmospheric composition, such as CO2 concentrations, ozone, etc.

7.6 Ongoing increases in computing power have enabled increases in 
the complexity, spatial resolution, and ensemble size of climate 
modeling studies. However, at this time, climate model skill is still 
limited in particular by resolution and ensemble size, although 
new studies are addressing both of these issues. In practice there 
is a trade-off between these elements, and the results of climate 
impacts assessment are contingent on the chosen emphasis (see 
e.g. Challinor et al., 2009, Garcia-Carreras et al., 2014). The same 
reasoning applies to the impacts models themselves. Multi-model 
ensembles of agricultural models have become increasingly 
common in recent years, and they have proved to be a useful 
method for producing more robust results (e.g. Asseng et al., 
2013, Elliott et al., 2014b, Martre et al., 2015), including detailed 
projection of the impact of future drought and heat stress on 
crop failure (Challinor et al., 2010, Deryng et al., 2014).

7.7 Despite the improvements in resolution, and the increased use of 
multiple agricultural models to quantify and reduce uncertainty, 
no one modelling system can produce agricultural predictions 
that are both precise and accurate. Where uncertainty ranges 
are produced, experts differ on the effectiveness of those ranges 
in summarising knowledge (Wesselink et al., 2014). Hence, the  
use of ensembles needs to go hand-in-hand with analysis of 
fundamental processes, and tools to effectively combine models 
and data (Challinor et al., 2013). Model-centric and data-centric 
analysis can be used alongside each other to address uncertainty 
in adaptation planning (Vermeulen et al., 2013). 

7.8 The Agricultural Model Intercomparison and Improvement 
Project (AgMIP; Rosenzweig et al 2013) is a distributed program 
that includes many protocol-driven climate-scenario simulation 

Figure 6: Top panel: Observed decadal (blue) and modeled (red) Extreme 
Precipitation Index (EPI) percent anomalies for 2 day duration and 1-in-5 year 
events, percent deviation from long-term mean (1901-1960). The red bars 
are the median of the CMIP5 historical simulations from 1906 through 2005. 
The error bars represent +/- 1 standard deviation of the models. Bottom panel: 
The model median of EPI percent anomalies for RCP4.5 (purple) and RCP8.5 
(green) and historical model simulations for the period 1901-2100 by decade. 
The long term mean is 1901-1960.  Error bars show the spread of the models 
as +/- 1 standard deviation. From Wuebbles et al. (2014).
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exercises for historical model intercomparison and future climate 
change conditions. It involves ecophysiological and agricultural 
economics modeling groups around the world and includes a 
number of model intercomparison projects from field to global 
scale which then form the basis for future climate impact and 
adaptation assessments. The Inter-Sectoral Impacts Model 
Intercomparison Project (ISI-MIP; Warszawski et al 2014 
and Rosenzweig et al 2014) takes a similar protocol-driven 
approach to multi-model biophysical and agro-economic model 
intercomparison and assessment. The first phase of ISI-MIP, also 
called the ISI-MIP Fast-Track, expanded the sectoral coverage to 
include hydrology, biomes, and health impacts of climate change. 
The agricultural sector, coordinated by AgMIP, included 7 Global 
Gridded Crop Models (GGCMs) and 9 global agro-economic 
models, driven by projections for 20 different climate scenarios 
(4 representative concentration pathways [cite] implemented 
by 5 different climate models as part of the Coupled Model 
Intercomparison Project CMIP5 (Taylor et al. 2006).  In 2013 
AgMIP launched the Global Gridded Crop Model Intercomparison 
(GGCMI; Elliott et al 2015) to build on the lessons learned from 

the Fast-Track model intercomparison. The project is proceeding 
in three phases: 1) historical model evaluation and validation 
(2014 and 2015), 2) analysis of the sensitivity of models to 
Carbon, Temperature, Water, and Nitrogen (CTWN; 2015 
and 2016), and 3) a new coordinated assessment of climate 
vulnerabilities, impacts, and potential adaptations (2016 and 
2017). 

7.9 Among a number of important outcomes, these projects broadly 
result in openly available multi-model archives of historical and 
future crop yield and climate impact simulations, as well as the 
climatological and agro-environmental forcing data driving these 
studies. These archives, inspired largely by similar outcomes of 
the longstanding Coupled Model Intercomparison Project (CMIP) 
serve to synthesize the best available international science, 
characterize uncertainties in models and assessment products, 
and identify key knowledge gaps that must be addressed by the 
community. We apply these archives here as tools to evaluate the 
frequency and severity of present and near-future extreme food 
production shocks. 

Changing risk for climate scenarios

8.1 The impact of climate change on future crop production will 
depend on the impact on mean yields and on the incidence 
and scale of extreme outcomes. This study also made initial 
investigation, using the AgMIP/ISI-MIP Fast Track ensemble, into 
the question of whether risk in regional and global agricultural 
production is stationary. 

8.2 In terms of temperature anomalies, (Hansen et al, 2012) show 
that relative to a base period of 1951-1980, the distribution of 
temperatures has already shifted to the positive and displays a 
fatter tail at the warm end of the distribution. (Milly et al., 2008) 
argue that in the context of hydroclimatic change “stationarity 
is dead” and water resource managers will need to plan for 
greater uncertainty in flood risk, water supply and quality. In 
terms of yield projections, (McCarl, Villavicencio, & Wu, 2008) 
use statistical methods to evaluate the stationarity assumption 
by first analysing whether climate variables are stationary in 
the observed data and then using the historical relationship 
between these variables and yield to project out into the future. 
Their conclusions do not support the stationarity assumption for 
future crop yield distributions. (Zhu, Goodwin, & Ghosh, 2011) 
use statistical methods to show that time-varying models of yield 
distributions are able to more accurately capture yield risk with 
important implications for pricing of future agricultural insurance 
premiums.

8.3 In terms of global calories of maize, soy, wheat and rice 
produced, the AgMIP/ISI-MIP model ensemble indicates that 
a 1-in-200 year event given present-day (20th century) climate 
forcings equates to a loss of approximately 8.5% (Figure 6 top). 
In fact, according to the ensemble, an event that we would have 

called 1-in-100 years over the 1951-2010 period could become 
as frequent as a 1-in-30 year event by the middle of the century. 

8.4 This analysis is conducted assuming full effectiveness of CO2 
fertilization effects, but many recent questions have been raised 
about magnitude of this beneficial effect (Leakey 2009). If we 
assume instead that CO2 fertilization effects at this large scale will 
be completely ineffective, we find similar effects but even more 
severe in later decades (Figure 5 bottom). In fact, without CO2 
effects, a historically 1-in-100 year event is estimated to occur 
more than once every 10 years by the second half of the 21st 
century, and this effect is on top of a large reduction in average 
yields from climate impacts directly. 

8.5 For individual crop/country pairs, the degree of increase in risk 
over the near-future period can be quite significant. For US maize 
for instance (Figure 7 top) the 1-in-200 year event in the near 
future period is 25% more severe than the 1-in-200 even in the 
historical period (46% loss vs. 36.9%). In this case, what was a 
1-in-200 year event in the historical period is comparable to a 
1-in-30 year event in just a few decades. 

8.6 There are of course some examples where the extreme tail of the 
distribution improves somewhat, with China/maize as a good 
example (Figure 8 bottom). Here the ensemble shows marginal 
improvements in the estimated 1-in-200 year event over the next 
few decades. The distribution does still shift toward the negative 
however, with the severity of the 1-in-30 year event increasing 
nearly 65% (from an 11% to an 18% loss event). Details of the 
AgMIP/ISI-MIP ensemble for other major crops and producers 
are included in Appendix B. 
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Figure 7: Distributions of global calorie-weighted yield of maize, soy, wheat, and rice for the historical (1951-2010) and near-future (2011-2040) period with 
(top) and without (bottom) the effects of fertilization from increasing atmospheric CO2 included. The estimated magnitude of a 1-in-200 year event in each 
period is indicated.

Figure 8: Distributions of maize yield in the US (top) and China (bottom) for the historical (1951-2010) and near-future (2011-2040) period.

8.7 This analysis is very much a ‘first look’ at how climate change 
may contribute to a change in the probability of extreme 
weather driving global production shocks. Caution should be 
applied when considering the details of the changes outlined 
here. However, this study does provide some evidence for an 

understanding of the direction and scale of change of the 
risk of global production shock events. The simulations clearly 
indicate that the risk of the events shown in the scenarios is set to 
increase, both in intensity and severity over time.
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Research questions

9.1 The approach documented here is designed to provide plausible 
scenarios to study the risk of global production shocks and 
consider how they are likely to evolve over time. However, to fully 
explore the implications of extreme events in the present and 
near-future, significantly more research is needed. In addition to 
generally more in depth analysis, the study highlights the need 
for many specific steps to advance the understanding of extreme 
weather risks to global food production. We describe a few of 
these important research topics here. 

9.2 The lack of sufficiently long samples of present day climatology 
is a major limitation to the quality of the extreme value analysis 
that can be undertaken. The provision of long simulations of 
climate under present day forcing (and snapshots of future 
forcing levels), would allow a more rigorous assessment of the 
probability of extreme events that could impact on global food 
production, and therefore a more confident assessment of 
the level of extreme-event risk in the global food system. That 
assessment could inform decision making on investments in 
food security resilience and would form a baseline by which 
to evaluate the change in risk over time as a result of climate 
change.

9.3 More research is also needed on the risk of coincident extreme 
weather events in multiple major breadbasket regions. A full 
evaluation of coincident events is well outside the scope of 
the present study, however we here present some preliminary 
analysis of event coincidence based only on the historical record 
in order highlight the importance of this topic. We use country-
level FAO production data to compare the years of positive 

(negative) production anomaly in each crop, for each country, 
with the anomaly in other producing countries for the same crop. 
No account is made for the size of the anomaly, only that one 
occurred. It is assumed that the mechanisms causing positive 
and negative yield anomalies are different and so are shown 
separately. This was done for both yield (tonnes per hectare) and 
production (tonnes), although only the results for production are 
shown here. The results for maize are shown in Figure 8, but the 
corresponding plots for each of the other three crops is included 
in Appendix C.

9.4 These relationships are essential for the resiliency of the global 
food system. For example, this initial look at the simultaneous 
occurrence of production anomalies in major producer countries 
for maize, indicates that there may be an anti-correlation 
between China and the US (Figure 9). More often than not over 
the last 50 years, negative anomalies in the US are associated 
with positive anomalies in China (and vice versa). Identifying and 
studying these relationships is an important part of evaluating 
the stability and resiliency of global food markets. 

9.5 Much more work is needed. The present analysis is based on 
a very limited sample size and doesn’t consider the scale of 
the anomaly or the drivers of coincident events (e.g. climate 
teleconnections). It is thus not possible to draw definitive 
conclusions from this ‘light touch’ analysis, but it demonstrates 
potential links and highlights the fact that further studies, 
both into the statistical correlation of events, and the driving 
meteorological dynamics behind any correlations, are needed.

Figure 9: Average production anomalies given a positive (left) and negative (right) anomaly in a major producer (y axis) for 1963-2011, shown in order of size of 
producer. E.g. left plot shows that for all years in which the US experienced a positive yield anomaly, China experienced a positive anomaly 20-40% of the time 
(or a negative anomaly 60-80% of the time).
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Summary and conclusions

10.1 This study represents an initial look at the evidence available 
on the exposure and impact of extreme weather events on 
global food production. The aim was to develop a set of 
realistic production shock scenarios across the four major 
global crops (maize, soybean, wheat and rice) that are 
plausible under present-day or near-future conditions. We 
conclude that the current global food production system is at 
risk of shocks from extreme weather, and that this risk is likely 
to increase over time. 

10.2  Production of the biggest global crops (maize, soybean, wheat 
and rice) is concentrated in a relatively small number of major 
producing countries, with a large amount of overlap across 
crops. This concentration exposes the global food system to 
large shocks driven by extreme weather events in these regions 
and increases the risk of simultaneous multiple breadbasket 
failures. However, there is, at present insufficient data available 
to quantify this risk, either in the present day, or in the future 
under in a changing climate. There is therefore an urgent 
need to understand driving dynamics of meteorological 
teleconnections in order to quantify the likelihoods of 
coincident production shocks in major food-producing regions. 

10.3  By examining the recent past, we see that weather events, 
particularly drought, are a major driver of lost production. 
Using the example of past events we generate a set of 
scenarios of weather-driven production shocks, for each of 
the four crops, that are plausible in the present or near future 
climate. These scenarios include production shocks of the order 
of a 10% decrease in global production for each of the four 
major crops.

10.4  Climate science research offers the opportunity to explore 
the implications of climate change for the future risks of food 
production system shocks from extreme weather, primarily 
through the use of climate models and crop models. Initial 
analysis in this study, using crop model data suggests that 
what we would call a rare extreme food production shock in the 
late 20th century is likely to become more common in future, 
and that a 1-in-100-year production loss from the 20th century 
may be as frequent as 1-in-30 in just a few decades. 

10.5  However, estimates of the risks posed by extreme events are 
currently limited by available model simulations. There is 
a need for high resolution global climate model runs using 
stationary present day forcings with ensemble size that are 
sufficient for probabilistic analysis of extreme event risk. Similar 
stationary forcing runs for snapshots of future forcing are also 
needed. Much work is also needed to improve crop model 
representations of physiological mechanisms, genetic variation 
and improvement in response to extreme growing conditions. 
Understanding the interactions between average production 
increases, variability, and resilience to extreme events is 
crucial to future food security, and further investigation into 
the meteorological teleconnections between major food 
production regions, and the probability of coincident shocks in 
multiple breadbaskets, both now and in the future, is needed.
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Appendix A: Scenario development with historical data

Soybean 

Geography of production 
Similarly to maize, soybean production is focused in a small number 
of very large producers. In this case the US, Brazil and Argentina, 
which between them make up around 80% of global production. 
The next largest producer is China, with 7% of the total. Figure 
10 shows the geographic distribution of maize production on a 
world map to illustrate. Although some soybean production is for 
direct consumption, it is an important global crop mainly as it is the 
primary source of animal feed globally. The distribution of production 
indicates that meat production globally has a large dependence 
on weather impacts on soybean harvests in the Americas, although 
China, and to a lesser extent India, are also important. 

Soybean production has seen an almost tenfold increase since 1960, 
from around 300,000 tonnes to almost 3 million tonnes (Figure 
11). Of the four main crops included in this study, this is the largest 
rise. It is the result of a combination of both increasing yield and 
harvested area. This very rapid change over the last 50 years means 
that it is particularly difficult to assess the impact of weather events 
on production in the past and compare them with impacts in the 
present day, or even the near future. In particular the increasing area 
being planted with soybean now changes the exposure of the crop 
to weather events, and it may be difficult to identify the weather that 
has the biggest impact on production as a result. 

Figure 10: Proportion of total global soybean production grown by country 
(2001-2010 average). Source FAOSTAT (2015)

Historic production shock case study
Since the 1960s there have been a number of large negative 
soybean yield events including 1974, 1980, 1983, 1988 and 2009. 
Due to the large change in soybean production during the 60s, 70s 
and 80s – in which global area harvested increased almost fourfold 
the low yield events of 1988 and 2009 were assessed. These years 
provide the best representation of the current soybean production 
system, and are therefore more relevant.

Unlike for maize, the two selected soybean events show different 
spatial patterns (Figure 13). In 1988 large yield decreases across 
North America decreased production in the region by almost 16% 
(-8 million tonnes). This was partially offset by positive production 
anomalies in Argentina and Asia, and resulted in a global production 

decrease of just over 7% (-7.2 million tonnes). In 2009 (Figure 12) 
however, the production anomaly was driven by a large negative 
yield anomaly in South America. Brazil, Argentina and Paraguay 
experienced yield anomalies of approximately -0.23 (-8.0%), -0.78 
(-30%) and -0.96 tonnes per hectare (-39%) respectively. A small 
positive yield and area harvested anomaly in the US was not enough 
to counter these deficits and the global production decreased by over 
16 million tonnes (-7.0%).    

%global total

Figure 11: Global production, yield and harvested area data for soybean from 
1960 to 2012. Source: FAOSTAT (2015)

The physiological requirements for soybean are similar to maize. In 
the US they are grown in similar regions and have similar growing 
periods, but with the soybean yield having a greater dependence on 
the weather in June, July and August (Westcott and Jewison, 2013).

In 1988, the negative yield anomaly in the US is driven by the 
combination of an anomalously low June rainfall event, followed 
by above average Jul-Aug temperatures and below average rainfall 
(Figure 13). These are the same large scale conditions which drove 
the corresponding 1988 maize yield anomaly, and have been linked 
to Pacific SST anomalies and local soil moisture conditions (Chen and 
Newman, 1998).



Figure 12: Soybean yield anomalies (tonnes per hectare) in 1988 (left) and 2009 (right). Source FAOSTAT (2015).

As in North America, the majority of soybean in South America is 
rainfed with a single harvest. This increases the vulnerability of the 
annual yield to severe weather and climatic conditions. The majority 
of South American soybean growth occurs between December and 
March. During this period in 2008/2009, the region experienced 
a severe drought with some areas failing to receive even half of 
the usual expected rainfall (USDA, 2009). In both Argentina and 
Brazil - in which the yield anomaly was -30% and -8% respectively 
- growing season rainfall was down by approximately 200mm and 
average temperatures were near or above average1. These are similar 
conditions to those driving the US soybean anomaly in 1988.

1  Author calculations based on the WFDEI reanalysis dataset (Weedon et al., 2014).

Figure 13: US Soybean Belt July-August precipitation (left) and average temperature (right). Source: National Centres for Environmental Information (NOAA) 
(2015).

The drought conditions experienced over South America in 2009 
have been linked to a strong La Niña episode (Arndt et al., 2010; 
Chen et al., 2010), which began during the last quarter of 2007 
and prevailed throughout 2008. The La Niña gradually weakened 
during the first half of 2009, however the severe rainfall deficit of 
2008/2009 had already affected soybean yields across the region. 
This highlights the increased exposure to severe weather events 
associated with single cropping practices. 



Production shock scenario 
From the data available on the geography of global soybean 
production, and the examples investigated from the case study year 
events, the following scenario was developed (Table 4). This outlines 
representative changes in production levels, based on the actual 
events of 1988. 

Notes: For soybean production the severe drought in North America in 
that year was off-set by high production totals in Argentina, which had 
optimal weather conditions (positive anomaly shown in orange). Planting 
in North America occurs in May-June, which is around the same time as the 
Argentinean crop is harvested. The Argentinean harvest at this time is from 
the crop planted the previous calendar year. We can therefore rule out the 
larger harvest in Argentina being a response to higher prices caused by the US 
harvest failure. It is interesting to note that the Argentinean crop in 1989 is 
actually slightly down, mainly due to reduced harvested area (which could still 
be meteorologically driven), even though this crop would have been planted 
just as the poor harvest in the US was being brought in.

Country Harvest %  Absolute  Driving 
 period production production meteorology
  decrease* loss (tonnes) 

US Sept-Oct 17% 8,351,795 Drought

Brazil Jan-May 2% 442,676 

Argentina April-June +21% 1,720,000 

Global  7% 7234337 

* % of national total

Wheat

Geography of production
Unlike maize or soybean, wheat production has a wide geographic 
spread. A large number of countries each produce proportionally 
small amounts of wheat (Figure 14). The largest single producer is 
China which contributes around 16% to the global total. This means 
that wheat production is more evenly exposed to weather events 
across the globe, and single events, in restricted areas, are less likely 
to have a large impact on global production. Global wheat shocks 
are more likely to come from a number of events simultaneously in 
different parts of the world.

Figure 14: Proportion of total global wheat production grown by country. 
Source FAOSTAT (2015)

%global total

Wheat production globally has risen fourfold since 1960, from 
around 200 million tonnes to around 800 million tonnes (Figure 15). 
Unlike the other crops in this study, this is predominantly a result of 
increases in yield. Harvested area has fluctuated over this time, and 
although it is higher in 2012 than it was in 1960, this change is much 
smaller than in other crops, and lower than it has been at other times 
in the past.

Figure 15: Global production, yield and harvested area data for wheat from 
1960 to 2012. Source: FAOSTAT (2015)

Historic production shock case study
The production of wheat is spread across a number of countries, 
ranging from the tropics to the mid-latitude regions; the top 10 
producers account for less than 70% of the global production, with 
no country producing more (on average) than 17%. The global 
wheat yield anomaly time series highlights a number of large 
negative yield anomalies since the 1970s. To assess events most 
relevant to present day wheat production, the years of 2003, 2007 
and 2010 were investigated.

At the regional scale, a large negative yield anomaly (-9.5%) 
occurred across Europe (particularly Eastern Europe, -20.5%) in 2003 
(Figure 16), with an estimated decrease in production of 45 million 

Table 4: Scenario figures for a soybean production shock (based on 1988 case 
study)



tonnes (-22%). Combined with a decrease in Russia, this outweighed 
production gains in North America and Australia, and contributed to 
a global production decrease of over 35 million tonnes (-6.1%). 

As in 2003, Europe and Russia experienced negative yield anomalies 
in 2007 (Figure 16), however this also occurred alongside negative 
yield anomalies in the US and Australia. The only top 10 producer to 
experience a positive yield anomaly in 2007 was Pakistan; although 
both China and India (the top two producers) had increased 
production values due to positive area harvested anomalies. These 
diverse spatial impacts resulted in a decreased global production of 
approximately 29 million tonnes (-4.6%). The significant production 
loss has been proposed as a contributing factor to the 2007/2008 
price spikes (UK Government, 2010) which had severe impacts on 
global food security, particularly affecting malnourishment (FAO, 
IFAD and WFP, 2011).  

In 2010 however, the global yield anomaly was not only driven by 
European countries, but also Russia, Australia and Canada (Figure 
16). Yield decreases in China and India of approximately -0.1 tonnes 
per hectare, and a negative area harvested anomaly within the 
US resulted in a global production loss of over 28 million tonnes 
(-4.2%). Whilst both 2003 and 2007 were greater in absolute 
tonne decreases, in 2010 all of the top 10 major wheat producers 
(except Germany with a negligible positive anomaly) experienced 
negative production anomalies. The reduced production led to 
Russia imposing an export ban; which in turn has been identified as a 
contributing factor to multiple socio-economic events particularly in 
Egypt and Pakistan (Welton, 2011).

Based on initial investigations the large decreased wheat production 
in 2003 appears to have been driven by a number of different 
meteorological factors. In parts of Eastern Europe, such as Ukraine, 
which experienced large negative yield anomalies, it has been 
reported that snow crusting occurred in the late winter and early 
spring. A warm spell caused the snow to melt. It refroze and formed 
a sheet of ice which suffocated the plants (USDA, 2004). The yield 
decreases seen in Western Europe and Russia are instead related to 
a severe heat wave and drought (Levinson and Waple, 2004) during 
the spring and summer growing periods. This summer heatwave is 
also likely to have affected Eastern Europe production. Furthermore, 
the USDA (2004) reports that weather conditions also affected the 
area harvested in Europe, China and India; drought or winter-kill 
meant that some fields were hayed, grazed, or simply abandoned. 

To date little work has been done assessing the larger scale 
meteorological conditions which caused the yield losses in Ukraine, 
but the 2003 European summer heatwave has been attributed 
to a persistent upper-level ridge of high pressure centred over the 
continent, partly related to a prolonged positive phase of the eastern 
Atlantic (EA) teleconnection pattern (Levinson and Waple, 2004). 

In 2007, initial investigations suggest that drought appears 
to have been the primary cause for wheat production losses in 
Canada, Australia, Russia and Europe (USDA, 2008b; Levinson and 
Lawrimore, 2008). In the US, an April freeze and above average 
annual rainfall contributed to the yield decreases. Torrential rains 
during harvest period affected Northern Europe (USDA, 2008b). 
Levinson and Lawrimore (2008) associate the Australian drought to 

ENSO conditions changing from El Niño to La Niña, whilst the poor 
conditions in Northern Europe during harvest are associated with a 
strongly positive North Atlantic Oscillation (NAO).

Unlike 2003 and 2007, 2010 - in which all major producers 
experienced reduced production – appears to be associated with 
many different types of weather conditions. Reports suggest 
droughts impacted Canada and China, whilst Russia experienced 
a severe heatwave with record high temperatures (Grumm, 2011, 
Blunden et al., 2011). India, which grows wheat during the winter 
months, experienced a sharp cold spell, whilst heavy rains occurred in 
Australia during the main growing period (Blunden et al., 2011).

Figure 16: Wheat yield anomalies (tonnes per ha) in 2003 (top left), 2007 
(middle) and 2010 (bottom). Source: FAOSTAT (2015)



Production shock scenario
From the data available on the geography of global wheat 
production, and the examples investigated from the case study year 
events, the following scenario was developed (Table 5). This outlines 
representative changes in production levels, based on the actual 
events of 2003. 

Country Harvest %  Absolute  Driving 
 period production production meteorology
  decrease* loss (tonnes) 

Europe June-Sept 22% 45,442,051 Drought,  
    high temps
Russia & 
Ukraine July-Aug 38% 23,602,100 Temporary  
    snow thaw  
    and re-freeze  
    killing winter  
    crop

China March-June 6% 5,521,575 

India March-May 6% 4,039,420 Failure of  
    monsoon in  
    previous year

Global  6% 36,588,847 

* % of national total

Table 5: Scenario figures for a wheat production shock (based on 2003 case 
study)

Rice

Geography of production
Rice production is primarily focused in South and East Asia, with 
almost 30% in China and a further 40% in India and Bangladesh 
(Figure 17). Around 20% comes from Southeast Asia. Rice is a 
predominantly irrigated crop, but this geographic focus indicates 
that the relationship between global rice production and the Asian 
monsoon systems for water availability is likely to be critical.

Global rice production has increased around fourfold since 1960, 
from around 200 million tonnes to 800 million tonnes per year 
(Figure 18). This is a result of increases in both yield and harvested 
area. In many parts of Asia, including China and Vietnam, 
government initiatives have seen an intensification of production 
since the 1960s, and multiple crops are grown and harvested in 
a single year in many locations. This can make it more difficult 
to identify single weather events that impact on production, but, 
combined with irrigation, can increase resilience of production to 
weather shocks.

Figure 17: Proportion of total global rice production grown by country. Source 
FAOSTAT (2015

%global total

Figure 18: Global production, yield and harvested area data for rice from 1960 
to 2012. Source: FAOSTAT (2015)



Historic production shock case study
Global rice production is dominated by China and India; together 
these provide over 50% of all rice production. As seen for other crops, 
large changes in major producing regions have occurred for rice 
during the 1960s and 1970s, and thus the use of data from these 
periods may not be representative of the present day rice production 
system. For this reason, the years 2002 and 2003 were assessed 
in more detail; these years provide examples of major production 
anomalies in both China and India.

During 2002 rice production was reduced by approximately 22 
million tonnes (-3.6%) due to negative yield and harvested area 
anomalies (Figure 19). This was predominantly driven by a negative 
yield anomaly in India of approximately 10%, although small 
negative yield anomalies were also seen in China, Bangladesh and 
Myanmar. In 2003 however it is a large negative production in China 
of almost 13 million tonnes (-7.8%) – driven by negative anomalies 
in harvested area and yield – which drove the global anomaly (Figure 
19). Positive yield and production anomalies were recorded in India 
however, at ~4 million tonnes (3.2%), this was not large enough to 
overcome the loss experienced in China. Other positive and negative 
impacts at the regional scale largely cancelled out in 2003.

Within India, the irrigated rice is grown all year round, whilst rainfed 
lands are grown during June-September, relying on the summer 
monsoonal rainfall. Due to this, a failure in the 2002 monsoon rains in 
July (Waple and Lawrimore, 2003) - in which some regions recorded 
rainfall deficits of up to 76% - is likely to have significantly impacted 
the rice yield and harvested area (USDA, 2003). This is not the only 
occurrence of the monsoon failure; Indian production was reduced in 
1979, 1982, 1987, and 2009 and these coincide with either a delay 
or failure of the summer monsoon rainfall.

A number of factors, including Indian and Pacific Ocean SSTs, land-
sea temperature gradients and conditions over the Tibetan Plateau, 
can influence the timing and intensity of the South Asian Monsoon 
(Turner and Annamalai, 2012). Figure 20 illustrates the relationship 
between the South Asian Monsoon and ENSO; a number of the 
observed Indian rice production anomalies have coincided with El 
Niño events. Furthermore, this could explain observed production 
and yield anomaly correlations between India and Brazil as El 
Niño events are associated with drier than average conditions in 
both regions. Identifying the main drivers is also complicated due 
to the large amount of rice production which is irrigated in India 
and China. These systems will rely on different sources for water – 
monsoon rainfall, glacier melt and ground water, and will affect the 
vulnerability of local production to weather conditions.

In contrast to the northern regions, south-eastern China, in which 
most rice is grown, experienced an extended dry spell in 2003 
(Lawrimore and Waple, 2004). Some regions received only 65% 
of the average annual precipitation. The dry spell in south-eastern 
China also coincided with a July heat wave; combined, these events 
reportedly killed 30 people and destroyed 1 million hectares of arable 
land, mostly in Hunan, where 2000 streams and rivers dried up 
during 2003. There is little literature on the cause of this drought in 
China, however an important driver of conditions during the summer 
months is the East Asia Monsoon (Wang et al., 2008) and its role in 
this event could be investigated further.

Figure 19: Rice yield anomalies (tonnes per hectare) in 2002 (left) and 2003 
(right). Source: FAOSTAT (2015)

Figure 20: All India monsoon rainfall anomalies and ENSO. Source: http://
www.tropmet.res.in/~kolli/mol/Monsoon/Historical/air.html, accessed 25th 
March 2015.



Production shock scenario
From the data available on the geography of global rice production, 
and the examples investigated from the case study year events, 
the following scenario was developed (Table 6). This outlines 
representative changes in production levels, based on the actual 
events of 2002 & 2003. 

Table 6: Scenario figures for a wheat production shock (based on 2002 & 
2003 case study)

Country Harvest %  Absolute  Driving 
 period production production meteorology
  decrease* loss (tonnes) 

China June-Nov 0.7% 1,315,410 

India Oct – Dec 15% 18,785,959 Failure of  
    monsoon

SE Asia  0.7% 1,185,531 

Global  4% 21,729,256 

* % of national total

Note: 2003 also saw a decline in global rice production (2%), driven by 
extreme drought in China. Other regions did not have such a poor year. 
Combining 2002 rice and 2003 wheat years, which were driven in part by 
the failure of the same 2002 Indian monsoon, means that this scenario now 
assumes the failure of the Indian monsoon in two successive years. This is 
plausible, but is not what happened in these events.

In both the 2002 and 2003 low rice production years, reductions in South 
America contributed to the global total. The observational evidence doesn’t 
suggest any strong link between Brazil and the US in terms of production 
anomalies, but meteorologically this does need further investigation to justify 
the legitimacy of combining years with production shocks in S. America, with 
other years with production shocks in N. America. 



Appendix B: Details of model-based analysis

We consider an ensemble of crop/climate impact models run over an 
historical period (1949-2007) from the AgMIP Global Gridded Crop 
Model Intercomparison (GGCMI; Elliott et al 2015), a protocol-based 
multi-model intercomparison and validation project including 15 
global crop modeling groups. We use simulations driven by climate 
forcing data from the Princeton Global Forcing Dataset (Sheffield 
et al 2006) and use a skill-weighted ensemble of GGCMI models 
over the historical period (skills calculated based on time-series 

Figure 21: GGCMI model-based anomalies (1949-2007) for global maize production calculated using a range of (equally consistent) detrending and 
aggregation methodologies.

Figure 22: GGCMI model-based anomalies (1949-2007) for global wheat production calculated using a range of (equally consistent) detrending and 
aggregation methodologies.

correlations between simulated results and FAO statistics at country 
level). For a detailed description of the GGCMI protocols and models, 
see Elliott et al 2015. 

Model-ensemble-based results 
Preliminary results for maize, wheat, rice and soybean are shown in 
Figures 20-23 

Figure 23: GGCMI model-based anomalies (1949-2007) for global rice production calculated using a range of (equally consistent) detrending and aggregation 
methodologies.



Figure 24: GGCMI model-based anomalies (1949-2007) for global soybean production calculated using a range of (equally consistent) detrending and 
aggregation methodologies.

Maize

Figure 24 reproduces Figure 7 without the effects of increasing 
atmospheric CO2 included. 

Figure 25: Distributions of maize yield in the US (top) and China (bottom) for the historical (1951-2010) and near-future (2011-2040) period without CO2 
fertilization effects.



Wheat

Similar relationships hold for other major crop bread-baskets, such 
as wheat production in India (Figure 24 - 26), where a 1-in-100 
year event in the past is estimated to be approaching a 1-in-30 year 
frequency by the middle of the 21st century.  

Figure 26: Distributions of wheat yield in India for the historical (1951-2010) and near-future (2011-2040) period with (top) and without (bottom) CO2 effects.

Figure 27: Distributions of wheat yield in Russia for the historical (1951-2010) and near-future (2011-2040) period with (top) and without (bottom) CO2 effects.



Figure 28: Distributions of wheat yield in France for the historical (1951-2010) and near-future (2011-2040) period with (top) and without (bottom) CO2 effects.

Rice

Rice production in the ensemble shows a more stable risk profile, 
due in large part to the high prevalence of irrigation and, in the later 
periods, strong response to CO2 fertilization. 

Figure 29: Distributions of rice yield in India for the historical (1951-2010) and near-future (2011-2040) period with (top) and without (bottom) CO2 effects.



Figure 30: Distributions of rice yield in China for the historical (1951-2010) and near-future (2011-2040) period with (top) and without (bottom) CO2 effects.

Testing against a different crop model

 We here consider additional crop models from the AgMIP/ISI-
MIP Fast-Track project ensemble in order to check that our basic 
conclusions hold independent of model choice. We find broadly 
similar conclusions. 

Figure 31: Distributions of global calorie-weighted yield of maize, soy, wheat, and rice for the historical (1971-2010) and near-future (2011-2040) period with the 
effects of fertilization from increasing atmospheric CO2 included using the GEPIC global crop and climate impact model. The estimated magnitude of a 1-in-200 
year event in each period is indicated.



Appendix C: Coincidence of production shocks globally

Soybean

For soybeans, there appears to be some anti-correlation between the 
US and Brazil (the two largest soybean producers), where a positive 
anomaly in the US more often corresponds to a negative anomaly 
in Brazil, and a negative anomaly in Brazil more often corresponds 
to a positive anomaly in the US (Figure 32). The relationship does 
not hold in reverse for this data. Again, as with maize, this suggests 
that there is value in investigating both the statistical coincidence 
and the underlying driving meteorology of anomalies of production 
for the major producing countries. In particular the indication that 
a negative anomaly in China more often coincides with a positive 
production anomaly in the US is an interesting one, as the kind of 
relationship could act as a dampener for food security incidents, and 
should be investigated in more detail.

Figure 32: Average production anomalies given a positive (left) and negative 
(right) anomaly in a major producer (y axis) for 1963-2011, shown in order of 
size of producer

Wheat

In the case of wheat (Figure 33), although production is widely 
distributed there does appear to be a potential relationship between 
production anomalies in the two largest producers, China and India. 
The historic record shows a correlation of coincidence of positive 
and negative production events. Whilst this initial look does not 
provide enough evidence to confirm this relationship, it does support 
the value of taking investigating further with a more thorough and 
scientifically rigorous approach.

Figure 33: Average production anomalies given a positive (left) and negative 
(right) anomaly in a major producer (y axis) for 1963-2011, shown in order of 
size of producer

Rice

Rice production indicates some anti-correlation between negative 
anomalies in the two major producers (China and India), but no 
corresponding relationship in the case of positive anomalies (Figure 
34). Overall, the data suggests that many of the rice producing 
countries have good harvests in the same years, but that bad years 
in one country are more mixed globally. As with the data for the 
other crops, this is only indicative of possible relationships between 
different producing countries, and warrants further investigation.

Figure 34: Average production anomalies given a positive (left) and negative 
(right) anomaly in a major producer (y axis) for 1963-2011, shown in order of 
size of producer
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